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Abstract

A theoretical analysis of heat transfer in fully!developed laminar ~ow in a concentric annulus with peripherally
varying and axially constant heat ~ux has been made[ To determine the temperature\ superposition of the temperature
solutions for the average axisymmetric heat!~ux component and the perturbation heat!~ux component "the boundary
integral of which is zero# have been used[ The axisymmetric temperature solution is already known\ and the perturbation
temperature solution has been obtained numerically using a point!matching method[ A number of examples are presented
to demonstrate the method\ and to show typical wall temperature and heat transfer coe.cient distributions around the
boundary of the duct[

The use of the average heat transfer coe.cient in the case of peripherally varying boundary conditions has been
critically examined[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

A cross!sectional area
c speci_c heat of ~uid
bo\ a9\ kn\ cn\ dn constants
d diameter\ or equivalent diameter of duct
h heat transfer coe.cient
k thermal conductivity
Nu "�hd:k# Nusselt number
n integer
q\ q¹ heat ~ux\ average heat ~ux
r radius
T\ T
 temperature
u\ U velocity\ average velocity[

Greek symbols
a\ u angle
D perturbation or di}erence
r density[

� Corresponding author[ E!mail] buyrukÝcubid[cumhuriyet[
edu[tr

Subscripts
B bulk
m value at maximum velocity
p perturbation heat ~ux
u uniform heat ~ux
w wall
0 inner radius
9 outer radius[

0[ Introduction

Convection heat transfer to ~uid ~ow in long straight
ducts of constant cross!section is of special interest to
mechanical and chemical engineers\ and considerable
e}ort has been devoted over the past 59 years or so to its
understanding and prediction[ With the advent of high
speed computational facilities and sophistication in
mathematical techniques and experimental methods\
numerous problems in this area of study can now be
solved[

Of course most realistically\ the heat transfer to the
~ow cannot be taken in isolation[ That is\ the heat trans!
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fer to the ~ow takes place conjugately and inter!
dependently with the energy transfer in the surroundings\
and the thermal conditions at the boundary of the domain
of interest\ i[e[ the ducted ~ow\ are adjusted accordingly[
The temperatures and heat ~uxes at all the points of the
boundary are then _xed so as to maintain the energy
balance between the adjacent regions[ In this connection\
many of the studies of convection heat transfer con!
sidered the more simple idealised thermal boundary con!
ditions\ those of constant temperature and constant heat
~ux being the most familiar[ These two cases in particular
have been used to demonstrate the dependence of heat
transfer performance on thermal boundary conditions\
and as an approximation to actual conditions[ However\
numerous more realistic thermal boundary conditions
are readily brought to mind\ and it is immediately appar!
ent that variations of both temperature and heat ~ux may
occur around the perimeter of the cross!section as well
as in the ~ow direction[ Peripheral variations will be
considerable in the case of cross!~ow heat exchangers\ in
the radiant water!tube banks of boilers\ and in the
absorber tubes of many types of solar collector\ to cite
but three examples[ Of all the boundary conditions con!
sidered to date\ the general cases of arbitrary peripheral
variations of temperature or heat ~ux are the least well!
known\ and their analyses are very limited[ Indeed in
most heat exchanger applications\ some temperature or
~ux variations around the boundary is likely to occur\
and so its in~uence on heat transfer performance and
other thermal parameters is important[

While the problems associated with peripheral vari!
ation have been recognised as long ago as 0841 in con!
nection with annular ~ow ð0\ 1Ł it appears that the _rst
quantitative assessment of the e}ect of the peripheral
variation of heat ~ux in the case of a tube was made by
Reynolds about 0859[ In his work Reynolds ð2\ 3Ł showed
that there could be a pronounced in~uence of the cir!
cumferential heat ~ux variation in both laminar and tur!
bulent ~ows[ While reference had been made to the cor!
responding annulus problem ð4Ł\ it appears that
equivalent studies of peripherally varying boundary con!
ditions was not made until 0853\ albeit that most other
cases for this geometry had been investigated in a sys!
tematic manner[ At that time\ Sutherland and Kays ð5Ł\
extended the analysis of Reynolds ð3Ł\ to the annulus[ In
the early 0859s\ a very detailed theoretical and exper!
imental investigation which was carried out over four
years\ was made into the annulus problem by workers at
Stanford University ð6Ð09Ł[ In that study the annulus
problem was formulated in a general way\ and a number
of {fundamental solutions| " four in all# was obtained for
the axisymmetric case[ The possible extension to include
the aforementioned circumferential variation was recog!
nised then but the authors did not pursue this matter
further at that time[ One of the purposes of the present
paper is to continue with the annulus study using a cal!

culation procedure which has been developed by the
authors in connection with an earlier heat conduction
problem ð00Ł[ The method to be described may\ in prin!
ciple\ be used for any constant cross!section duct with
the proviso that the energy transfer to the ~ow is constant
in the ~ow direction[ Accordingly\ a comparison can be
made with the results obtained by Reynolds ð2Ł for a
round tube with arbitrary circumferentially varying heat
~ux[

In formulating the problem and in describing the solu!
tion procedure\ it is more complete and convenient to use
the concentric annulus geometry and this is done at the
outset in the following section[ The corresponding tube
analysis "the form of which is identical with that of the
annulus with appropriate changes#\ is presented later and
the comparison with the previous work of Reynolds ð2Ł
is made[ A further feature of the present investigation is
that advantage is taken of the existing results of the
pertinent fundamental solution for the annulus having
no peripheral variation of the heat ~ux[ Finally\ typical
numerical examples for both the tube and the annulus
are included with attention being focused on the e}ect of
peripheral variation of heat ~ux on wall temperature
and local heat transfer coe.cient[ With regard to heat
transfer coe.cient\ the meaning of {average heat transfer
coe.cient| in the present situation is clari_ed[ In the next
section\ the fundamental principles and the calculation
method are outlined[

1[ The solution procedure

As mentioned in the previous section\ the concentric
annulus has been chosen for the purpose of explaining
the present method of solution of the peripherally varying
heat ~ux problem[ If the usual idealisations associated
with a low speed "laminar# constant property ~uid with
no internal heat generation are assumed\ then in general\

91T � 0
urc
k

1T
1x1 "0#

for steady hydrodynamically and thermally developed
~ow[ Furthermore\ for a constant axial heat ~ux\ i[e[
constant energy transfer to the ~ow in the ~ow!wise direc!
tion\

1T
1x

�
1TB

1x
[ "1#

Now since the energy equation "0# is linear\ then fol!
lowing ð01Ł\ advantage may be taken of the superposition
of simpler solutions with their appropriate boundary con!
ditions[ By subdividing the peripheral heat ~ux into an
axisymmetric distribution and a perturbation compon!
ent\ the boundary integral of which is zero\ the problem
may be reduced to] "i# an axisymmetric laminar con!
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vection problem\ the solution of which is readily available
ð01Ł\ and "ii# a pseudo!conduction problem\ or laminar
convection problem with zero axial bulk temperature
gradient[ The solution of this problem necessitates the
solution of the Laplacian in the duct cross!section\ since
with equation "1# the right hand side of equation "0# is
now zero[ "With a speci_ed perturbation of boundary
heat ~ux\ this is a Neumann problem[#

The general axisymmetric geometry and heat transfer
solution is depicted in Fig[ 0 where the basic equations
and their corresponding general solutions are included
for completeness[ The _nal temperature solution is simply
the sum of the temperature solutions for the axisymmetric
and perturbation heat ~ux problems[

In engineering heat transfer\ the convective heat trans!
fer coe.cient or Nusselt number is also of interest\ and
it is then necessary to determine the di}erences between
the local wall temperature and the adjacent bulk "or
mixed!mean# temperature in the ~ow[ This information
is at hand for the axisymmetric "i[e[ uniform heat ~ux#
case ð01Ł\ while for the complementary perturbation heat
~ux problem\ Fig[ 0"c#\

TpB �
ÐA uT dA
ÐA u dA

�
ÐA uT
 dA
ÐA u dA

¦C2 "2#

must be evaluated once T
 has been determined as outlined
later[

The superposition aspect of this problem may be dem!
onstrated most e}ectively in the following way[ An axi!
symmetric problem\ for which the solution is already
known\ is chosen and this is then split into two simple
axisymmetric problems in accord with the criteria set
earlier[ For convenience the following data are assumed]

"i# Inner and outer radii\ 9[92 and 9[94 m\ respectively^
"ii# Inner heat ~ux and outer heat ~ux\ 199 and 099 W

m−1\ respectively[

Figure 1 shows the situation and how the original prob!
lem is subdivided into system "i# corresponding to the
{uniform ~ux|\ and system "ii# corresponding to the {per!
turbation| problem[ Of course\ in this simple illustration
the perturbation is uniform around the boundary\ and in
order to conform to the zero net energy transfer criterion
of the pseudo!conduction problem the ~uxes in system
"ii# are chosen to satisfy] q0r0 � q9r9[ Now\ for the three
uniform heat ~ux cases shown in Fig[ 1\ the wall to
bulk temperature di}erences may be determined from the
{fundamental solutions| "of the second kind# given in ref[
ð01Ł[ The temperature di}erences are shown for each
case\ in Fig[ 1\ and it will be seen that the sum of the
temperature di}erences in the two component systems
equals the temperature di}erence in the original system\
thereby verifying the calculation procedure[ Of course\
the original problem may be solved completely without
any reference to superposition\ but the example shows
the general principles which need to be adopted in the
more general peripherally varying heat ~ux case[

When the heat ~ux varies around the boundary of the
duct\ the procedure is to apportion the ~ux into its uni!
form and perturbation components as before[ The uni!
form ~ux problem may be dealt with in the usual way
using the fundamental solutions of the second kind\ while
the temperature associated with the perturbation requires
separate consideration as outlined in the following para!
graphs where a point!matching scheme ð02Ł is employed[

Since the boundary integral of the perturbation heat
~ux is zero\ then 91T � 9\ the solution for which is]

T � C2¦b9 ln"r#¦ s
n�0\1\[[[

"anr
n¦bnr

−n# cos"nu#

¦ s
n�0\1\[[[

"cnr
n¦dnr

−n# sin"nu# "3#

as reference to standard mathematical texts will reveal[
When there is symmetry about PP then the sine terms in
equation "3# vanish[ Now in the present problem with
speci_ed heat ~ux at the annulus boundary\ we have

Dq0 � −k 0
1T
1r1r�r0

and Dq9 � ¦k 0
1T
1r1r�r9

"4#

and in order to e}ect the calculation of the coe.cients an\
bn\ cn\ and dn for the general case\ a numerical procedure is
necessary[ Following the procedure used by the present
authors in an earlier study ð00Ł\ equations "3# and "4# are
used at a number of points on the boundary[ The resulting
set of linear equations may then be solved numerically
with the result]

T � f"r\ u#¦C2 � T
¦C2 "5#

where C2 is an arbitrary constant[ As shown in the Appen!
dix\ for the very special case when there is symmetry
about PP and\ in addition\ the perturbation heat ~ux is
an odd function about VV the perturbation bulk tem!
perature is simply C2\ and the local wall to bulk tem!
perature di}erence is]

"Tw−TpB# �"T2−C2#

� b9 ln"rw#¦S"anr
n
w¦bnr

−n
w # cos"nu#[ "6#

The total local wall to bulk temperature di}erence is
obtained by adding that according to equation "6# with
that obtained from the fundamental solution of the uni!
form heat ~ux problem[ The local Nusselt number is then
calculated in the usual way[

Most generally the perturbation bulk temperature
must be calculated from equation "2# with T
 � f"r\ u#
and]

u � 1U 0
r1
9−r1¦1r1

m ln"r:r9#

r1
9¦r1

0−1r1
m

1 "7#

with

rm �X
r1
9−r1

0

1 ln"r9:r0#
"8#

for the laminar ~ow velocity _eld[ However\ as outlined
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Fig[ 0[ Superposition principle applied to laminar convection heat transfer in an annulus with peripherally varying heat ~ux "q constant
in x!direction#[

in the Appendix\ in the case of the annulus the numerical
integration may be avoided and the perturbation bulk
temperature obtained directly from the temperature solu!
tion[

The total local wall to bulk temperature di}erence is
obtained again by summation[ It is to be noticed that at
no stage in this calculation is the actual temperature
determined^ this is of no consequence because it is the
temperature di}erence which is of interest in assessing

the peripheral variation of local wall temperature and
local heat transfer coe.cient[

2[ The round tube with peripherally varying heat ~ux

In outlining the solution procedure for axisymmetric
laminar ~ow with peripherally varying heat ~ux\ the gen!
eral axisymmetric geometry\ i[e[ the concentric annulus
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Fig[ 1[ Example of superposition principle for laminar convection heat transfer in an annulus with axisymmetric heat transfer[

has been used[ The calculation for the round tube is
identical apart from the following modi_cations and sim!
pli_cations]

In equations "3# and "6#\ b9\ bn and dn are inadmissible\
Dq\ the inner wall perturbation no longer exists\ and
equation "7# is replaced by]

u � 1U 00−0
r
r91

1

1 [ "09#

As for the annulus\ the solution is obtained as the sum!
mation of the solutions for the uniform heat ~ux com!
ponent and the perturbation heat ~ux component[ Of
course for the uniform heat ~ux Nu � 3[25 which leads
to the corresponding wall to bulk temperature di}erence
while the calculation of the local wall to bulk temperature
di}erence due to the perturbation is e}ected using the
simpli_ed form of equation "3# in a point!matching
scheme at points on the circumference[ The procedure
may be made more clear by means of a speci_c example
as shown in Fig[ 2"a#[ A cosinusoidal heat ~ux dis!
tribution has been chosen so that a direct comparison of
the results may be made with those of Reynolds ð2Ł[ The
disposition of the heat ~ux has been chosen intentionally

so as to avoid symmetry about PP in order that the most
general form of equation "3# may be used[ In the present
illustrative problem\ 08 points over the range
"−p:1 ¾ u ¾ p:1# were selected[

The perturbation ~ux at each point was matched to
the conduction heat ~ux and the resulting equations in
an and cn were then solved using Gaussian elimination[
With the chosen heat ~ux the perturbation bulk tem!
perature is zero[ Accordingly\ the wall to bulk tem!
perature di}erence at each point may be determined\
which when added to that for the uniform ~ux component
gives the complete solution for the temperature and hence
heat transfer coe.cient[

The results are displayed in Fig[ 2"b# using polar co!
ordinates[ This graphical representation convincingly
demonstrates the points made by Reynolds ð2Ł\ con!
cerning the in~uence of the variation of heat ~ux[ The
numerical values are in excellent agreement[ Typically\
Reynolds ð2Ł\ gives the analytical result]

Nu �"0¦cos a# > 0
00
37

¦
cos a

1 1 "00#

which con_rms the values shown in Fig[ 2"b# at a � 9
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Fig[ 2[ Heat transfer in fully!developed laminar ~ow of air in a tube with cosinusoidal variation of heat ~ux around the circumference[

and "p:1# and a � 006> where the heat transfer coe.cient
is in_nite[

This example then shows that the point!matching
method leads to reliable results in this case\ and that it
may possibly be used in the more general case of the
concentric annulus[

3[ The concentric annulus with peripherally varying

heat ~ux on the inner boundary

The solution procedure for this particular problem has
been described in detail in a previous section[ The exam!
ple chosen is shown in Fig[ 3 and refers to an internally
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Fig[ 3[ The internally heated concentric annular duct with peripherally varying heat ~ux on the inner boundary[

heated annulus of the same geometry used earlier but
now with a heat ~ux on the inner surface varying as
q0 � 024 cos"u¦p:1# for "−p ¾ u ¾ 9#\ the outer surface
being adiabatic[ As in the tube example\ the heat ~ux is
disposed in such a way that the general form of equation
"3# is appropriate in dealing with the perturbation com!
ponents\ the temperature di}erences are obtained using
the fundamental solution of the second kind "6#Ð"09#
and the point!matching solution\ respectively[ The local
inner!wall to bulk temperature di}erences are then _nally
added and local heat transfer coe.cients on the inner
wall determined in the usual manner[

Of course\ points on both boundaries of the annulus
are used in the point!matching calculation to determine
the perturbation temperature _eld\ which interestingly\
corresponds to that of thermal conduction in the cross!
section with heat ~owing in and out over parts of the
inner boundary only[

The results are displayed in Fig[ 4\ using Cartesian co!
ordinates in this case[ Figure 4"a# shows how the total
inner!boundary heat ~ux is apportioned into a uniform
component and a perturbation component which of
course has a line integral equal to zero[ The temperatures
are displayed in Fig[ 4"b#\ that for the uniform heat ~ux
being a constant obtained from the fundamental solution
for axisymmetric heat transfer given in Table 7[0\ ref[
ð01Ł[ The total wall to ~uid temperature di}erence is
simply the summation of DTpB and DTuB[ Finally\ the
distribution of heat transfer coe.cient is plotted in Fig[
4"c# which includes the Nusselt number for a uniform
heat ~ux on the inner boundary and an insulated outer
wall[

The in_nite heat transfer coe.cient is reached at
a � 75[4>\ i[e[ where the total temperature di}erence is
zero[ Beyond a � 89>\ the heat transfer coe.cient is
necessarily zero[
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Fig[ 4[ The results for the annulus problem[

These data refer to the calculation made with 02 points\
"and hence 02 unknowns#\ around the boundary of the
annulus[ Other numbers of points were tested but it was
found that 02 gave an average value of "Tw0−C2# closest
to zero[ Of course there are unlimited combinations of
annular geometry and boundary heat ~ux distributions\
and a sequence of calculations in line with the axi!
symmetric case with various ratios of inner and outer
boundary heat ~uxes "see ref[ ð01Ł# is not possible[ The
present example does however serve to illustrate the cal!
culation procedure for the annular geometry\ and the
need to take cognizance of asymmetry of ~ux on wall
temperature levels in such geometries[

Albeit that the chosen annulus and tube examples are
in no way directly comparable\ it is to be noted that the

variation of Nu "apart from the in_nite value# in the
annular geometry is signi_cantly larger[

4[ Average heat transfer coef_cient

The heat transfer performance of a surface is frequently
measured in terms of an {average heat!transfer
coe.cient|[ In the present investigation\ where the local
heat transfer coe.cient\ h\ varies peripherally\ the aver!
age value may be de_ned in two ways[ As pointed out in
ref[ ð05Ł\ the mathematical average value is the arithmetic
mean of the local values while a pseudo average value
based on the quotient of the mean heat ~ux and the mean
temperature di}erence is sometimes used[ In general these
two values are di}erent\ the magnitude of the di}erence
depending on the peripheral ~ux and temperature gradi!
ents[ Accordingly\ it is incorrect to compare average heat
transfer coe.cients obtained experimentally using aver!
age surface heat ~ux and average temperature with math!
ematical mean values obtained analytically[

In the present examples where this is an in_nite value
of the heat transfer coe.cient\ it is not possible to cal!
culate the mathematical average numerically[

However\ in the simple case shown in Fig[ 1\ it is easy
to show that the mathematical average of h over the
whole boundary of the annulus is di}erent from the
pseudo!average based on average ~ux and temperature[
Accordingly\ caution must be exercised whenever cal!
culations and comparisons of average heat transfer
coe.cients are being made[ The ratio of these two aver!
aged heat transfer coe.cients may be greater or less than
unity depending on the ~ux and temperature gradients in
the boundary wall\ this being a further illustration of the
conjugate nature of the heat transfers[

5[ Discussion and conclusions

A theoretical investigation of heat transfer in fully!
developed laminar ~ow in an annulus with peripherally
varying heat ~ux has been carried out[ The calculation
involves the superposition of the solutions for an axi!
symmetric heat ~ux and a perturbation heat ~ux both of
which are constant axially[ The former solution is readily
available in the literature\ while that for the perturbation
heat ~ux is obtained using a numerical point!matching
method[

In order to test the present procedure\ the example of
a tube with cosinusoidally varying heat ~ux "see ref[ ð2Ł#\
has been calculated and found to give results in exact
agreement with those obtained by Reynolds ð2Ł[ Accord!
ingly\ the calculation procedure was then extended to an
annular ~ow which is heated internally by a peripherally
varying ~ux on the inner wall[ As for the tube\ a similar
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pattern in the results for both temperature and heat trans!
fer coe.cient has been obtained[

A by!product of the calculation is the two!dimensional
temperature _eld associated with the perturbation heat
~ux[ This of course corresponds to the heat conduction
solution in the annular cross!section arising out of a heat
~ow into the annulus and an equal heat ~ow out of the
annulus over the inner boundary\ as shown in Fig[ 4"a#[
A separate plot of the perturbation isotherms is found to
be in accord with these heat ~ows over the cross!section\
lending further con_dence to the results of the point!
matching procedure[ Optimization of the number of
points chosen may be e}ected by repetitive calculations[
The spacing between points may of course be variable
and it would appear prudent to select _ner discretization
in the vicinity of discontinuities of ~ux such as that at
a � 89> "or u � 9#[ Other calculations using heat ~ux
variations with more severe discontinuities caused some
di.culties\ the case of a constant ~ux over a part of the
boundary being a typical example[ Such a case is however
unrealistic in practice and this matter was not pursued
any further[ Another test of the accuracy of the prediction
of the perturbation temperature is symmetry about the
appropriate axis of the cross!section and this test was
applied in all cases by examining the relative magnitudes
of the temperatures at the corresponding points[

A distinctive feature of the heat transfer coe.cient
distribution in the examples studied\ is the in_nite mag!
nitude of the Nusselt number at a particular angular
location[ This somewhat curtails the investigation on the
{average heat transfer coe.cient| since the {mathematical
average value| here cannot be determined analytically
from a set of discrete numerical values[ However\ as
explained earlier\ caution has to be exercised when com!
paring arithmetic mean values with experimentally deter!
mined average values based on average ~ux and average
temperature di}erence\ since these are not the same quan!
tities[

The existence of the in_nite heat transfer coe.cient
is little cause for concern] in fact\ there are numerous
situations where this may occur and so the present case
is in no way exceptional in this respect[ More important
is the in~uence of variation of ~ux on the local wall
temperature\ the disposition of which may be the critical
factor in the engineering situation[ The present method
enables these wall temperatures to be predicted with con!
siderable con_dence[

While one of the main purposes of the present enquiry
has been to extend the annulus problem to include such
e}ects\ it is clear that\ in principle\ the procedure may be
used for any cross!section duct with any peripheral ~ux
variation[ Again\ however\ the wide diversity of
geometries and associated ~ux distributions in any par!
ticular shape makes a parametric study of this particular
problem an impossible task[

For the anulus however\ part of the solution is at

hand in the tabulated list of fundamental solutions of the
second kind\ and it remains to determine the remaining
perturbation solution for the particular case by the point!
matching numerical procedure[

Appendix] the perturbation bulk temperature\ TpB

As indicated in the second section\ the bulk tem!
perature associated with the perturbation heat ~ux is
calculated using equation "2# with the appropriate sub!
stitutions for the velocity u and the temperature T
[ In the
general case this may be e}ected numerically] however\
an elegant method used earlier by Savino et al[ ð04Ł\ for a
rectangular duct\ may be adapted for the present annular
geometry[ Savino et al[ converted the equation for the
bulk temperature using the energy equation and then
used the second form of the Green|s theorem to develop
an expression for the bulk temperature in terms of a line
integral[ In the present case of the annulus\ the same
procedure may be followed taking cognizance of the fact
that an annulus is a doubly!connected duct in the line
integral[ Fortuitously\ in the present formulation the bulk
temperature for the perturbation heat ~ux component is
zero "apart from the added constant\ C2#[ This is because
the complementary uniform heat ~ux component is axi!
symmetric[ Accordingly\ integration of equation "2# is
avoided in the annulus "and pipe# problem and the wall
to bulk temperature di}erence for the perturbation ~ux
is simply]

"Tpw−TpB# � "Tpw−C2#−"TpB−C2#

"Tpw−TpB# � b9 ln rw¦ s
n�0\1[[[

"anr
n
w¦bnr

−n
w # cos "nu#

¦ s
n�0\1[[[

"cnr
n
w¦dnr

−n
w # sin "nu#[ "A0#

Once the constants b9\ an\ bn\ cn and dn have been deter!
mined by the point!matching method\ the local heat
transfer rate may be calculated[

Furthermore\ it is interesting to consider the case when
the perturbation heat ~ux is symmetrical about the diam!
eter as shown in Fig[ 0 and when "in addition# the per!
turbation heat ~ux is an odd function about u � p:1[ In
this case\ it can be shown ð03Ł\ that

T
"r\ u# � −T
"r\ p−u# "A1#

when again\ from equation "2#\ the perturbation bulk
temperature

TpB"−C2# � 9[ "A2#
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